skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohammadi, Mohammadreza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper addresses the challenge of deploying machine learning (ML)-based segmentation models on edge platforms to facilitate real-time scene segmentation for Autonomous Underwater Vehicles (AUVs) in underwater cave exploration and mapping scenarios. We focus on three ML models-U-Net, CaveSeg, and YOLOv8n-deployed on four edge platforms: Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), Google Edge TPU, and NVIDIA Jetson Nano. Experimental results reveal that mobile models with modern architectures, such as YOLOv8n, and specialized models for semantic segmentation, like U-Net, offer higher accuracy with lower latency. YOLOv8n emerged as the most accurate model, achieving a 72.5 Intersection Over Union (IoU) score. Meanwhile, the U-Net model deployed on the Coral Dev board delivered the highest speed at 79.24 FPS and the lowest energy consumption at 6.23 mJ. The detailed quantitative analyses and comparative results presented in this paper offer critical insights for deploying cave segmentation systems on underwater robots, ensuring safe and reliable AUV navigation during cave exploration and mapping missions. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  2. This paper explores the problem of deploying machine learning (ML)-based object detection and segmentation models on edge platforms to enable realtime caveline detection for Autonomous Underwater Vehicles (AUVs) used for under-water cave exploration and mapping. We specifically investigate three ML models, i.e., U-Net, Vision Transformer (ViT), and YOLOv8, deployed on three edge platforms: Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), and NVIDIA Jetson Nano. The experimental results unveil clear tradeoffs between model accuracy, processing speed, and energy consumption. The most accurate model has shown to be U-Net with an 85.53 F1-score and 85.38 Intersection Over Union (IoU) value. Meanwhile, the highest inference speed and lowest energy consumption are achieved by the YOLOv8 model deployed on Jetson Nano operating in the high-power and low-power modes, respectively. The comprehensive quantitative analyses and comparative results provided in the paper highlight important nuances that can guide the deployment of caveline detection systems on underwater robots for ensuring safe and reliable AUV navigation during underwater cave exploration and mapping missions. 
    more » « less